ar X iv : h ep - t h / 05 11 18 9 v 1 1 8 N ov 2 00 5 IHES / P / 05 / 48 A Chiral Perturbation Expansion for Gravity

نویسندگان

  • M. Abou - Zeid
  • C. M. Hull
چکیده

A formulation of Einstein gravity, analogous to that for gauge theory arising from the Chalmers-Siegel action, leads to a perturbation theory about an asymmetric weak coupling limit that treats positive and negative helicities differently. We find power counting rules for amplitudes that suggest the theory could find a natural interpretation in terms of a twistor-string theory for gravity with amplitudes supported on holomorphic curves in twistor space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 05 11 23 3 v 2 2 9 N ov 2 00 5 One - loop f ( R ) Gravitational Modified Models

The one-loop quantisation of a general class of modified gravity models around a classical de Sitter background is presented. Application to the stability of the models is addressed.

متن کامل

ar X iv : h ep - t h / 05 11 23 3 v 1 2 3 N ov 2 00 5 One - loop f ( R ) Gravitational Modified Models

The one-loop quantisation of a general class of modified gravity models around a classical de Sitter background is presented. Application to the stability of the models is addressed.

متن کامل

ar X iv : h ep - t h / 05 11 18 3 v 1 1 8 N ov 2 00 5 Radiation equations for black holes

It has been shown in the previous paper that the metric in the semiclassical region of the collapse spacetime is expressed purely kinematically through the Bondi charges. Here the Bondi charges are expressed through this metric by calculating the vacuum radiation against its background. The result is closed equations for the metric and the Bondi charges. Notably, there is a nonvanishing flux of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005